

Циркуляционный насос

Серия LPA

Руководство по монтажу и эксплуатации

Содержание

1.	назначение и ооласть применения					
2.	Комплект поставки		4			
3.	Технические характеристики и у	словия эксплуатации	5			
	3.1. Условия эксплуатации		5			
	3.2. Технические характеристи	(и	6			
	3.3. Габаритные и присоединит	ельные размеры	6			
4.	Устройство и принцип работы		8			
5.	Меры безопасности		9			
6.	Монтаж насоса					
	6.1. Общие правила монтажа		11			
	6.2. Электрическое подключени					
	6.3. Ввод в эксплуатацию					
	6.4. Правила эксплуатации					
7.	Управление и настройка					
	7.1. Панель управления		19			
	7.2. Настройки и рабочие хара					
	7.3. Напорно-расходные харак	теристики	25			
	7.4. Рекомендации по настройн					
	7.5. Системы с перепускным кл					
8.	Техническое обслуживание					
9.	Транспортирование и хранение		31			
10.						
11.						
12.						

Данное руководство по эксплуатации содержит принципиальные указания, которые должны выполняться при монтаже, эксплуатации и техническом обслуживании энергосберегающих циркуляционных насосов торговой марки UNIPUMP®.

Во избежание несчастных случаев и возникновения неисправностей необходимо внимательно ознакомиться с данным Руководством перед началом эксплуатации Изделия.

Настоящее Руководство объединено с Паспортом.

1. Назначение и область применения

Циркуляционные насосы серии LPA предназначены для создания принудительной циркуляции теплоносителя в следующих системах:

- системы водяного подогрева пола;
- однотрубные системы отопления;
- двухтрубные системы отопления.


Насосы являются наиболее подходящими для систем:

- с постоянным или переменным расходом;
- с переменной температурой в трубопроводе.

Функциональные возможности насосов:

- автоматический режим работы;
- пропорциональное регулирования давления в системе;
- поддержание постоянного заданного давления в системе;
- работа с постоянной заданной частотой вращения.

Расшифровка маркировки насоса

2. Комплект поставки

Наименование	Количество, шт.
Насос в сборе	1
Соединительные элементы:	
– муфта резьбовая	2
– накидная гайка	2
– прокладка	2
Штекер для подключения электрокабеля	1
Руководство по эксплуатации	1
Упаковка	1

Техническая поддержка + 7 495 734 91 97

3. Технические характеристики и условия эксплуатации

3.1. Условия эксплуатации

Параметр	Значение
Окружающая среда:	
– температура, °С	0 +40
– относительная влажность воздуха, %, не более	95
Перекачиваемая среда:	
– свойства	 вода; неагрессивные, негорючие и взрывобезопасные жидкости без твёрдых и волокнистых включений; охлаждающие низкозамерзающие жидкости
– температура, °С	+2+95
 – максимальное содержание этиленгликоля, % 	50
– максимальная жёсткость, <i>мг-экв/л</i>	3
– pH	79,5
Макс. давление в системе, МПа (бар)	1 (10)
Макс. температура нагрева поверхности насоса, °C	125

3.2. Технические характеристики

Папачотп				Моде	ель LPA			
Параметр -	20-40	25-40	32-40	20-60	25-60	32-60	25-80	32-80
Электрическая сеть, В; Гц				~220 ±	10%;	50		
Мощность, <i>Вт</i> / Рабочий ток, <i>А</i>	522	2/0,04.	0,19	54	5/0,04.	0,2		130/ 1,09
Макс. напор, <i>м</i>	4	4	4	6	6	6	8	8
Макс. производительность, $M^3/4$ (л/мин)	1,8 (30)	2,6 (43)	3 (50)	2,4 (40)	3,6 (60)	3,6 (60)	7,5 (125)	10,2 (170)
Защитные функции:								
— блокировка ротора	•	•	•	•	•	•	•	•
– перегрузка по току	•	•	•	•	•	•	•	•
– перегрев							•	•
Класс нагревостойкости изоляции					F			
Уровень шума, дБ				<	43			
Степень защиты				II	P44			
Индекс энергоэффективности	Е	EI ≤ 0,2	0	E	EI ≤ 0,2	0	EEI≤	0,23
Вес нетто, кг	2,1	2,3	2,5	2,1	2,3	2,5	3,3	3,4

3.3. Габаритные и присоединительные размеры

Модель		Габари		устано ры, мм	вочные		,	размеры, йм
	L1	L2	B1	B2	H1	H2	G1	G2
LPA 20-40	130	106	96	46	165	136	1"	3/4"
LPA 25-40	180	106	96	46	165	136	1½"	1"
LPA 32-40	180	106	96	46	165	136	2"	1¼"
LPA 20-60	130	106	96	46	165	136	1"	3/4"
LPA 25-60	180	106	96	46	165	136	1½"	1"
LPA 32-60	180	106	96	46	165	136	2"	1¼"
LPA 25-80	180	90	129	64,5	236	184	1½"	1"
LPA 32-80	180	90	129	64,5	236	184	2"	1¼"

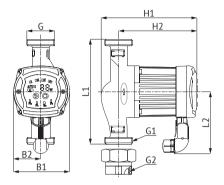


Рис. 1. Модели LPA **-40, LPA **-60

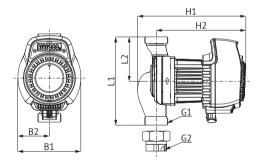


Рис. 2. Модели LPA **-80

4. Устройство и принцип работы

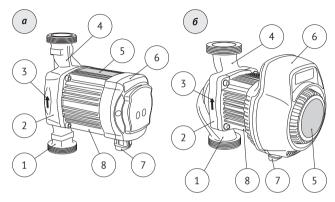


Рис. 3

Энергосберегающие циркуляционные насосы представляют собой моноблочную конструкцию, состоящую из проточной части, электродвигателя и электронного блока управления. Внешний вид и общее устройство насосов показаны на рис. 3.

Проточная часть объединяет в себе корпус 2, внутри которого находится рабочее колесо, всасывающий 1 и напорный 4 патрубки. Стрелка 3 указывает направление потока жидкости, а также способ установки (присоединения) насоса (см. подраздел 6.1. «Общие правила монтажа»). В зависимости от модели насоса, корпус проточной части изготовлен из чугуна или латуни (см. Раздел 1 «Назначение и область применения»), рабочее колесо изготовлено из инженерного пластика (полиэфирсульфон, PES).

Электродвигатель — однофазный, с постоянными магнитами. Ротор, вал и подшипники в процессе работы насоса смазываются и охлаждаются перекачиваемой жидкостью, ротор от статора отделяет гильза из нержавеющей стали. Корпус электродвигателя 8 изготовлен из алюминиевого сплава.

Блок управления 6 представляет собой электронное устройство частотного регулирования, которое позволяет автоматически согласовывать мощность насоса с фактическим перепадом давлений, что обеспечивает высокую энергоэффективность насоса.

Блок оснащён панелью управления (см. подраздел 7.1. «Панель управления»). В нижней части блока находится разъём 7 для подключения электропитания (см. подраздел 6.2. «Электрическое подключение»).

На идентификационной табличке 5, расположенной на корпусе электродвигателя (для моделей LPA **-40, LPA **-60) или лицевой стороне блока управления (для моделей LPA **-80), указаны основные технические характеристики насоса и его серийный номер, первые четыре цифры которого обозначают год и месяц изготовления (ГГММ...).

5. Меры безопасности

- Насос должен использоваться только по своему прямому назначению в соответствии с техническими характеристиками и указаниями, приведёнными в соответствующих разделах данного Руководства.
- Монтаж, техническое обслуживание, поиск неисправностей, ремонт и демонтаж насоса (далее – «Работы») должны производиться только квалифицированным специалистом, в строгом соответствии с «Правилами устройства электроустановок» (ПУЭ) и «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТБ).
- Насос следует подключать к электрической сети через дифференциальный автоматический выключатель (УЗО) с током срабатывания не более 30 мА.
- Насос не предназначен для использования лицами (включая детей) с пониженными физическими, сенсорными или

- умственными способностями или при отсуствии у них жизненного опыта или знаний, если они не находятся под присмотром или не проиструктированы об использовании насоса лицом, отвественным за их безопасность.
- Насос должен быть установлен в недоступном для детей месте или дети должны находиться под присмотром для недопущения игр с устройством. Не следует позволять детям контактировать с насосом, даже если он выключен и отключен от электрической сети.
- КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ:
 - подключать насос к электросети, не имеющей работоспособной и эффективной системы заземления;
 - перекачивать с помощью насоса вязкие, горючие, легковоспламеняющиеся, взрывоопасные, химически агрессивные жидкости и вещества;
 - эксплуатировать насос в местах с повышенной влажностью воздуха, содержанием пыли, химически агрессивных и/или воспламеняющихся газов;
 - устанавливать насос в помещениях, подверженных затоплению или воздействию отрицательных температур;
 - эксплуатировать насос, имеющий трещины в корпусах проточной части, электродвигателя и блока управления;
 - эксплуатировать насос при повышенном напряжении в электрической сети;
 - подключать насос к электрической сети при неисправном электродвигателе;
 - эксплуатировать насос при появлении запаха или дыма, характерного для горящей изоляции;
 - ремонтировать и обслуживать насос, подключенный к электрической сети.
- Перед проведением работ необходимо убедиться, что электропитание отключено и приняты все меры, чтобы исключить его случайное включение. Подача напряжения на насос разрешается только после окончания работ.

- Перед проведением работ необходимо сбросить давление в системе и дать насосу остыть.
- По окончании работ все демонтированные защитные и предохранительные устройства в электросети (линии подключения к электросети) должны быть установлены обратно и/или снова включены.
- Отключайте насос от электросети, если он не используется на протяжении длительного времени.
- Переоборудование или модификацию насоса разрешается выполнять только по согласованию с Изготовителем.
- Разборка и ремонт насоса должны осуществляться только специалистами Сервисной службы.

6. Монтаж насоса

6.1. Общие правила монтажа

ВНИМАНИЕ!

Установку насоса следует производить только после окончания всех сварочных, паяльных, слесарных работ в системе и тщательной промывки трубопроводов.

Перед проведением монтажных работ и вводом насоса в эксплуатацию внимательно ознакомьтесь с требованиями Раздела 5 «Меры безопасности».

Проверьте соответствие эксплуатационных, напорно-расходных и электрических характеристик насоса условиям на месте эксплуатации, а также параметрам Вашей системы и электрической сети (см. Раздел 3 «Технические характеристики и условия эксплуатации»). Произведите визуальный осмотр насоса и убедитесь, что отсутствуют механические повреждения корпуса.

ВНИМАНИЕ!

Определите значения pH и жёсткости воды, которые соответствовали бы одновременно характеристикам насоса, свойствам материалов из которых изготовлены конструктивные элементы трубопровода и иного оборудования системы. При необходимости проведите мероприятия по водоподготовке с целью обеспечения требуемых показателей.

Место, расположение и способ установки (врезки) насоса в систему должны обеспечивать свободный и удобный доступ для визуального контроля его технического состояния, выполнения ремонта (см. Раздел 11 «Возможные неисправности и способы их устранения») и демонтажа.

Место установки насоса рекомендуется выбирать с таким расчётом, чтобы в случае возникновения протечек в системе, например, в расположенной выше трубе или трубопроводной арматуре, вода не попала на кабель электропитания, блок управления и корпус электродвигателя.

ВНИМАНИЕ!

Не допускаются ударные воздействия на насос при монтаже.

Типовая схема монтажа насоса на трубопроводе системы показана на рис. 4. Соединение насоса 4 с трубопроводом производится с помощью входящих в комплект резьбовых муфт с накидными гайками 2 и прокладок 3 (см. Раздел 2 «Комплект поставки»). При монтаже соблюдайте направление движения перекачиваемой среды (вращения рабочего колеса), указанное стрелкой на корпусе проточной части насоса 5 (см. также рис. 3, поз. 3).

До и после насоса рекомендуется установить шаровые краны 1 для удобства его обслуживания, ремонта и демонтажа при необходимости замены.

ВНИМАНИЕ!

Насос должен быть установлен таким образом, чтобы вал электродвигателя располагался горизонтально.

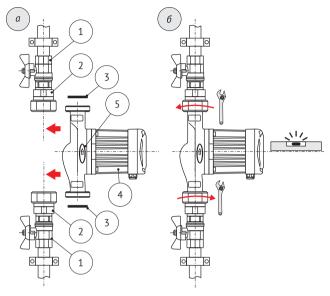


Рис. 4

Допустимые и недопустимые способы установки насоса и положения блока управления показаны на рис. 5.

При необходимости можно повернуть корпус двигателя. Для этого выполните следующие действия:

- 1. Закройте запорную арматуру до и после насоса.
- 2. С помощью шестигранного ключа открутите четыре винта, которые крепят корпус электродвигателя (рис. 6a).
- Поверните корпус в нужное направление (положение) таким образом, чтобы совпали крепёжные отверстия (рис. 66).
- 4. Установите винты в отверстия и затяните в перекрёстном направлении (рис. 6в).
- 5. Откройте запорную арматуру.

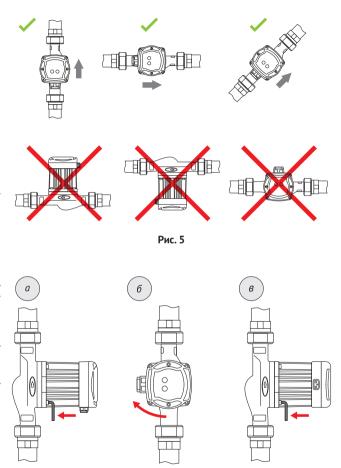


Рис. 6

14

ВНИМАНИЕ!

При повороте корпуса двигателя будьте осторожны, не повредите плоскую уплотнительную прокладку.

Во избежание передачи на насос нагрузок от трубопровода (изгиб, растяжение, кручение, вес) рекомендуется присоединяемые к насосу части трубопровода зафиксировать на смежных поверхностях с помощью подходящих креплений (клипсы, кронштейны, трубные хомуты со шпилькой и т. п.).

6.2. Электрическое подключение

ВНИМАНИЕ!

Электрическое подключение следует выполнять только после окончательного выполнения всех гидравлических соединений.

Подключение насоса к электрической сети должно быть выполнено квалифицированным специалистом в соответствии с требованиями Раздела 5 «Меры безопасности», с учётом электрических параметров насоса (см. подраздел 3.2. «Технические характеристики» и/или идентификационную табличку на корпусе насоса).

Электрическое подключение должно быть выполнено через штепсельное соединение или многополюсной выключатель-разъединитель с минимальным расстоянием между контактами 3 мм.

Штепсельная розетка должна быть:

- стационарная;
- иметь контакт заземления;
- использоваться только для питания насоса;
- защищена от проникновения влаги.

Перед подключением проверьте напряжение в питающей электрической сети и контролируйте его в процессе дальнейшей эксплуатации насоса. Работа с пониженным напряжением ведёт к снижению

напорно-расходных характеристик насоса и повышению рабочего (номинального) тока.

Для подключения насоса к электрической сети используйте штекер, поставляемый с насосом (см. Раздел 2 «Комплект поставки»). Для повышения защиты штекера от проникновения влаги рекомендуется использовать кабель с поперечным сечением круглой формы, соответствующего диаметра. Сечение жил кабеля, должно соответствовать мощности насоса.

Проденьте электрический кабель через кабельный ввод и присоедините жилы к контактам штекера (рис. 7а). Затяните зажимную гайку кабельного ввода, чтобы избежать вращения кабеля внутри ввода и скручивания жил внутри штекера. Вставьте штекер в разъём на блоке управления (рис. 76 и рис. 3, поз. 7). Появление световой индикация на панели управления покажет, что питание подключено.

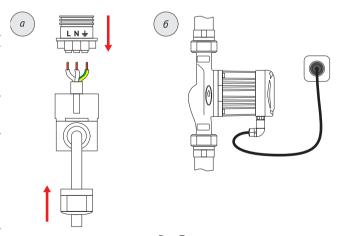


Рис. 7

6.3. Ввод в эксплуатацию

Перед тем как производить запуск насоса убедитесь в том, что система заполнена водой, из неё удалён воздух и давление на входе насоса соответствует требованиям, указанным в подразделе 6.4. «Правила эксплуатации».

Насос не предназначен для удаления воздуха из всей системы. Для полного удаления воздуха из системы и предотвращения его накапливания в ходе дальнейшей эксплуатации могут потребоваться: установка предохранительной арматуры (например, автоматический воздухоотводчик (рис. 8)) и контроль её работоспособности, обеспечение герметичности системы и т. д.

Рис. 8

Воздух в насосе может вызвать шум во время его работы. Для удаления воздуха из насоса необходимо:

- Для моделей LPA **-40 и LPA **-60: на короткое время (зависит от типа и размера системы) переключите насос в режим работы с постоянной максимальной частотой вращения III ступень (см. Раздел 7 «Управление и настройка»).
- Для моделей LPA **-80: включите специальный режим работы для удаления воздуха (см. Раздел 7 «Управление и настройка»).
- После исчезновения шума установите режим работы насоса, наиболее подходящий назначению и параметрам Вашей системы (см. подраздел 7.4. «Рекомендации по настройкам»).

6.4. Правила эксплуатации

ВНИМАНИЕ!

Запрещается включение и работа насоса без перекачиваемой среды.

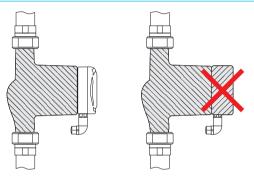


Рис. 9

При необходимости ограничить потери тепла от трубопровода и насоса, допускается теплоизолировать только корпусы проточной части и электродвигателя (см. Раздел 4 «Устройство и принцип работы»). Блок управления должен оставаться открытым (рис. 9).

ВНИМАНИЕ!

Запрещается использовать насосы в системах питьевого водоснабжения.

Чтобы избежать повреждения подшипников насоса, вызванного кавитационными шумами, на входе насоса должно поддерживаться следующее минимальное давление:

Температура перекачиваемой жидкости	≤+75 °C	+95 ℃
Минимальное давление на входе насоса	0,05 бар	0,28 бар

Чтобы защитить электродвигатель и блок управления от образования конденсата, который может привести к выходу насоса из строя, температура перекачиваемой жидкости всегда должна быть выше, чем температура окружающей среды.

7. Управление и настройка

7.1. Панель управления

ВНИМАНИЕ!

В процессе работы насос может сильно нагреться. Чтобы избежать термического ожога рекомендуется касаться только панели управления.

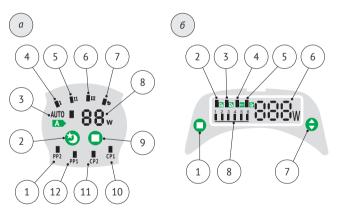


Рис. 10

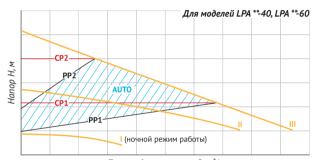
Описание и назначение элементов панели управления приведено в таблице:

Серия ГРА
насос.
иркуляционный
плуатации. Ц
жу и экс
о по монта
Руководство

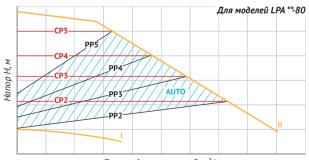
Поз.	Условное обозначение элемента / Пиктограмма	Описание			
Модели LPA **-40, LPA **-60 (рис. 10a)					
3	AUTO	Световой индикатор автоматического режима работы			
10	0	Кнопка выбора режима работы			
2	②	Кнопка включения/выключения ночного (экономичного) режима работы			
8	■ち	Световой индикатор работы в ночном (экономичном) режиме			
9	88 _w	Цифровой индикатор энергопотребления в Ваттах			
1,13	■ ■ PP1 PP2	Световые индикаторы режима работы с пропорциональным регулированием давления (напора), с самым низким РР1 и самым высоким РР2 значением			
11, 12	CP1 CP2	Световые индикаторы режима работы с постоянным минимальным СР1 и максимальным СР2 давлением			
5, 6, 7	I III III	Световые индикаторы режима работы с постоянной частотой вращения – I, II и III ступени			
Моде	ли LPA **-80 (рис. 10б)				
1	0	Кнопка выбора режима работы			
7	Ө	Кнопка выбора: • уровня регулирования (2, 3, 4, 5) — кривой напорно-расходных характеристик, по которой будет перемещаться рабочая точка; • ступени постоянной частоты вращения (1 - I ступень, 6 – II ступень)			

Поз.	Условное обозначение элемента / Пиктограмма	Описание
2	A	Световой индикатор режима работы с постоянным давлением
3		Световой индикатор режима работы с пропорциональным регулированием давления
4	ECO	Световой индикатор автоматического режима работы
5	Ç.	Световой индикатор режима удаления воздуха
8	1 2 3 4 5 6	Световые индикаторы: • уровней регулирования (кривых напорно-расходных характеристик) для режимов работы с постоянным давлением (СР2, СР3, СР4, СР5) и пропорциональным регулированием давления (РР2, РР3, РР4, РР5); • ступеней для режима работы с постоянной частотой вращения: 1 – I ступень, 6 – II ступень
6	333 _W	Цифровой индикатор, отображающий фактическое энергопотребление насоса в Ваттах

Выбор режима работы насосов производится последовательным нажатием кнопки ○. У моделей LPA **-80 предусмотрен дополнительный выбор уровня регулирования, который производится последовательным нажатием кнопки ○. Уровни регулирования 1 и 6 соответствуют режиму работы с постоянной частотой вращения — I и II ступень, соответственно. Для подтверждения выбора следует нажать кнопку ○. После этого погаснет индикатор действующего ранее режима работы и насос перейдёт в режим работы с постоянной частой вращения.

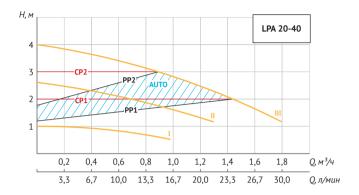

Описание процедуры выбора режима работы насоса приведено в таблице:

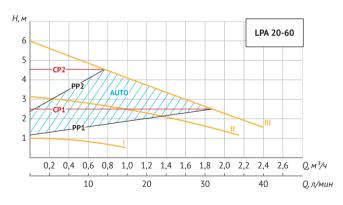
Кнопка	Последовательность нажатия кнопки	Световой индикатор	Режим работы
Модели	LPA **-40, LPA **-60 (puc. 1	10a)	
	0	AUTO	Автоматический
	1,2	PP1 PP2	Пропорциональное регулирование давления
U	3, 4	CP1 CP2	Постоянное давление
	5, 6, 7	I III III	Постоянная частота вращения
②	Вкл./Выкл.	■か	Ночной (экономичный)
Модели	LPA **-80 (puc. 106)		
	0	B	Постоянное давление
	1		Пропорциональное регулирование давления
U	2	ECO	Автоматический режим
	Нажмите и удерживайте кнопку в течение 56 секунд	₽	Удаление воздуха
	0	1 2 3 4 5 6	Постоянная минимальная частота вращения (I ступень)
0	1, 2, 3, 4	1 2 3 4 5 6	Уровни регулирования (2, 3, 4, 5) для режимов работы с постоянным давлением или пропорциональным регулированием давления
	5	1 2 3 4 5 6	Постоянная максимальная частота вращения (II ступень)

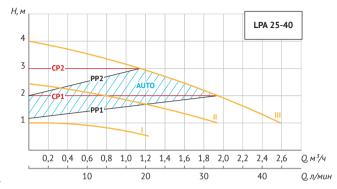

7.2. Настройки и рабочие характеристики насоса

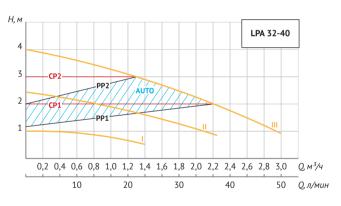
На графиках показаны примеры зависимости между настройками насоса и его рабочими характеристиками. См. также таблицу с описанием принципа регулирования рабочих характеристик насоса в зависимости от выбранного режима работы.

Данные о напорно-расходных характеристиках для каждой модели приведены в подразделе 7.3. «Напорно-расходные характеристики».

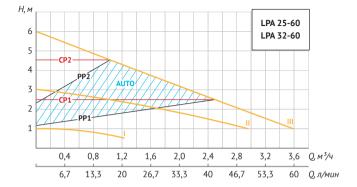

Производительность Q, м³/ч

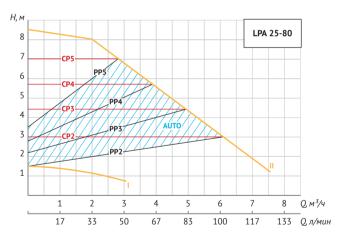


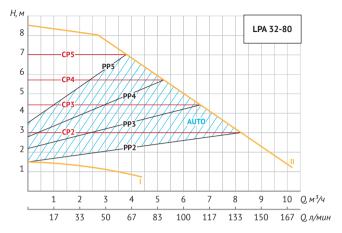

Производительность Q, м³/ч

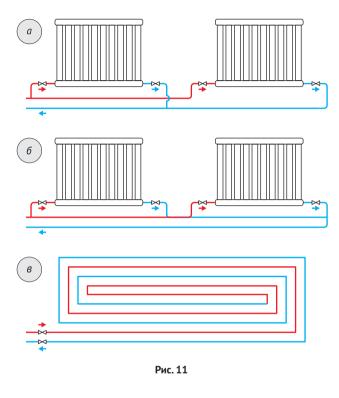

рно- пики й LPA **-40	Принцип управления Рабочая точка насоса смещается вверх или вниз по кривой пропорционального регулирования давления, в зависимость
й LPA **-40	или вниз по кривой пропорционального
й LPA **-80)	от расхода теплоносителя в системе. Напор (давление) падает при снижении расхода теплоносителя и увеличивается при повышении расхода теплоносителя
й LPA **-40 й LPA **-80)	Рабочая точка насоса смещается вперёд или назад по кривой с постоянным значением давления, в зависимости от расхода теплоносителя в системе. Напор (давление) остаётся постоянным независимо от расхода теплоносителя
й LPA **-40 й LPA **-80)	Рабочая точка насоса смещается вверх или вниз по кривой, соответствующей выбранной ступени. Напор (давление) повышается при снижении расхода теплоносителя и понижается при повышении расхода теплоносителя
нная ГО)	Работа насоса регулируется автоматически в установленном диапазоне, в соответствии с: • размером системы; • изменениями расхода теплоносителя в системе с течением времени В данном режиме осуществляется пропорциональное регулирование напора (давления) от высокого до низкого значения
й LPA **-40	Насос работает с постоянной минимальной частотой вращения (І ступень), т. е. с минимальными производительностью и энергопотреблением
	й LPA **-40 й LPA **-80) й LPA **-40 й LPA **-80) нная ГО)

7.3. Напорно-расходные характеристики








7.4. Рекомендации по настройкам

Рекомендуемые и альтернативные настройки насоса:

Система отопления	Режим работы насоса		
Системи отгопления	Рекомендуемый	Альтернативный	
Двухтрубная (рис. 11а)		Пропорциональное регулирование давления	
Однотрубная (рис. 11б)	Автоматический	Постоянное давление	
Водяного подогрева пола (рис. 11в)		Постоянное давление	

Из-за инерционности процесса нагрева оптимизация работы системы отопления происходит довольно медленно и может занимать не один час.

Если рекомендованный режим работы насоса не даёт требуемого распределения тепла в помещениях, выберите предложенные альтернативные настройки.

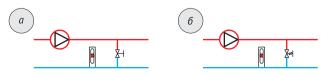


Рис. 12

7.5. Системы с перепускным клапаном

Перепускные клапаны предназначены для перенаправления теплоносителя из подающего трубопровода в обратный по обводному участку (байпасу) и поддержания его минимального расхода, если закрыты все регулируемые клапаны во всех контурах системы отопления. Такая система также включает расходомер.

Настройка насоса в данном случае будет зависеть от типа перепускного клапана:

Tun перепускного клапана	Выполняемые операции		
	1	2	
Регулируемый вручную (рис. 12а) Автоматический (регулируемый с помощью термостата, рис. 126)	Установите режим работы насоса с постоянной минимальной частотой вращения – I ступень (см. подраздел 7.1. «Панель управления»). Выполните настройку клапана в соответствии с инструкцией производителя	Установите режим работы насоса, наиболее подходящий назначению и параметрам Вашей системы (см. подраздел 7.4. «Рекомендации по настройкам») Установите режим работы с низким или высоким постоянным значением давления (см. подраздел 7.1. «Панель управления»)	

8. Техническое обслуживание

Правильно установленный циркуляционный насос не требует обслуживания в процессе эксплуатации.

9. Транспортирование и хранение

ВНИМАНИЕ!

При транспортировке и хранении необходимо защищать насос от механических повреждений и сырости.

Если насос был в эксплуатации, то перед длительным хранением следует очистить его наружную поверхность от пыли и загрязнений, промыть чистой водой, слить остатки воды и просушить.

Насос следует хранить в сухом закрытом помещении, при температуре окружающей среды от +1 до +40 °С, вдали от отопительных приборов, избегая попадания на него прямых солнечных лучей. Воздух помещения не должен содержать агрессивных паров и газов.

Транспортировка насоса, упакованного в тару, осуществляется крытым транспортом любого вида, обеспечивающим его сохранность, в соответствии с правилами перевозок грузов, действующими на данном виде транспорта. При транспортировке должна быть исключена возможность перемещения насоса внутри транспортного средства.

10. Утилизация

Изделие не должно быть утилизировано вместе с бытовыми отходами. Возможные способы утилизации необходимо узнать у местных коммунальных служб. Упаковка насоса выполнена из картона и может быть переработана.

11. Возможные неисправности и способы их устранения

Неисправность	Возможные причины	Способы устранения
Индикация отсутствует Насос не работает при включенном электропитании или самопроизвольно выключился в	Отсутствует напряжение в электрической сети	Проверьте напряжение в сети Проверьте питающую линию насоса: целостность электрического кабеля, качество контактов и исправность защитных устройств
процессе работы	Вал двигателя заблокирован (например загрязнениями или отложениями солей жёсткости)	
	Неисправен электронный блок управления	Обратитесь в Сервисный центр
Индикация присутствует	E1: блокировка ротора E2: неисправность электродвигателя	Обратитесь в Сервисный центр Обратитесь в Сервисный центр
Насос не работает, на цифровом индикаторе отображается сообщение об ошибке (код неисправности)	ЕЗ: сработала встроенная термозащита двигателя (только для моделей LPA **-80)	Отключите электропитание, найдите и устраните неисправность, затем снова запустите насос
,		Проверьте соответствие условий эксплуатации насоса (температуру перекачиваемой и окружающей среды, напряжение в электрической сети и пр.) его техническим характеристикам (см. подраздел 3.1. «Условия эксплуатации»)
		Работоспособность насоса восстановится после остывания электродвигателя

		повышенное, подключите насос к электросети через стабилизатор напряжения (см. подраздел 6.2. «Электрическое подключение»)	
Индикация присутствует Насос не работает при включенном электропитании	Низкое напряжение в электрической сети	Подключите насос к электрической сети через стабилизатор напряжения (см. подраздел 6.2. «Электрическое подключение»)	
Индикация присутствует Шум в насосе	Недостаточное давление на входе насоса	Повысьте давление в системе, в пределах допустимого (см. подраздел 6.4. «Правила эксплуатации»)	91 97
		Измените настройки насоса: установите более низкие уровень регулирования или ступень частоты вращения (см. Раздел 7 «Управление и настройка»)	ническая поддержка + 7 495 734 9
	Воздух в насосе	Удалите воздух из насоса (см. подраздел 6.3. «Ввод в эксплуатацию»)	поддеру
			ническая

Способы устранения

найдите и устраните неисправность, затем снова запустите насос Проверьте напряжение в электрической сети. Если напряжение

Обратитесь в Сервисный центр

Отключите электропитание,

Возможные причины

от перегрузки по току

Е4: неисправность модуля питания, аппаратная неисправность Е5: сработала защита

Неисправность

Неисправность	Возможные причины	Способы устранения
Индикация присутствует	Воздух в системе	Удалите воздух из системы (см. подраздел 6.3. «Ввод в эксплуатацию»)
Шум в системе	Насос работает со слишком высоким напором или производительностью (для режимов работы с постоянным значением давления и постоянной частотой вращения)	Измените настройки насоса: установите более низкие уровень регулирования или ступень частоты вращения (см. Раздел 7 «Управление инастройка»)
Индикация присутствует Недостаточный прогрев системы	Насос работает со слишком низкой производительностью	Измените настройки насоса: установите режим работы с более высокими значениями напора и производительности (см. Раздел 7 «Управление и настройка»)

12. Гарантийные обязательства

Изготовитель несёт гарантийные обязательства в течение 24 (двадцати четырёх) месяцев от даты продажи Изделия через розничную торговую сеть.

Срок службы Изделия составляет 5 (пять) лет с момента начала эксплуатации.

В течение гарантийного срока Изготовитель бесплатно устраняет дефекты, возникшие по вине Изготовителя, или производит обмен Изделия при условии соблюдения Потребителем правил эксплуатации.

Гарантия не предусматривает возмещения материального ущерба или травм, возникших в результате неправильного монтажа и эксплуатации.

ВНИМАНИЕ!

Гарантийные обязательства не распространяются:

- на неисправности, возникшие в результате несоблюдения
 Потребителем требований настоящего Руководства по монтажу и эксплуатации;
- на механические повреждения, вызванные внешним ударным воздействием, небрежным обращением, либо воздействием отрицательных температур окружающей среды;
- на насосы, подвергшиеся самостоятельной разборке, ремонту или модификации;
- на неисправности, возникшие в результате работы насоса без перекачиваемой среды и перегрузок. К безусловным признакам перегрузки относятся: разрушение уплотнений и подшипников; следы оплавления, потемнения, обугливание изоляции электрических проводов, контактов штекера и разъёма, обмотки статора, а также появление цветов побежалости на деталях и узлах электродвигателя;
- на ремонт, потребность в котором возникает вследствие нормального, естественного износа, сокращающего срок службы насоса, его узлов, деталей и комплектующих изделий, а также в случае полной выработки их ресурса.