

Насос для повышения давления

Серия WIP

Руководство по монтажу и эксплуатации

Содержание

1.	Назначение и область применения					
2.	Комплект поставки					
3.	Технические характеристики и условия эксплуатации					
	3.1. Условия эксплуатации	4				
	3.2. Технические характеристики	4				
	3.3. Габаритные и присоединительные размеры	5				
	3.4. Напорно-расходные характеристики	6				
4.	Устройство и принцип работы	6				
5.	Меры безопасности					
6.	Монтаж насоса	11				
	6.1. Общие правила монтажа	11				
	6.2. Электрическое подключение	15				
	6.3. Управление и режимы работы	16				
	6.4. Ввод в эксплуатацию	17				
7.	Техническое обслуживание					
8.	Транспортирование и хранение					
9.	Утилизация2					
10.	Возможные неисправности и способы их устранения 22					

Данное Руководство по эксплуатации содержит принципиальные указания, которые должны выполняться при монтаже, эксплуатации и техническом обслуживании насосов для повышения давления торговой марки UNIPUMP®.

Во избежание несчастных случаев и возникновения неисправностей необходимо внимательно ознакомиться с данным Руководством перед началом эксплуатации изделия.

Настоящее Руководство объединено с Паспортом.

1. Назначение и область применения

Насосы серии WIP (далее — «Насос», «Изделие») предназначены для повышения давления в системах автономного и централизованного горячего и холодного водоснабжения (далее — «Система»).

Область применения:

- Повышение давления и увеличение подачи воды в нестабильных системах хозяйственно-бытового водоснабжения.
- Поддержание стабильной работы отопительных котлов, газовых и электрических водонагревателей.

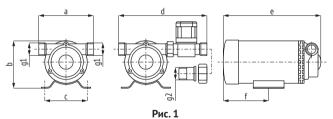
2. Комплект поставки

Наименование	Количество, шт.
Насос в сборе	1
Соединительные элементы:	
– резьбовая втулка	2
– накидная гайка	2
– прокладки	3
Датчик потока	1
Руководство по эксплуатации	1
Упаковка	1

3. Технические характеристики и условия эксплуатации

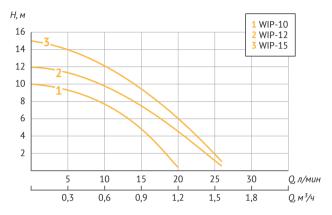
3.1. Условия эксплуатации

Параметр	Значение
Перекачиваемая среда:	
– свойства	вода;неагрессивные, негорючие
	и взрывобезопасные жидкости без твёрдых и волокнистых включений
– температура, °С	+2+70
– максимальный размер твёрдых частиц, <i>мм</i>	0,1
– содержание твёрдых частиц, г/м³, не более	100
– максимальная жёсткость, мг-экв/л	7
– pH	59
Окружающая среда:	
– температура, °С	+1 +40
– относительная влажность воздуха, %, не более	80
Макс. допустимое давление*, МПа (бар)	1 (10)


^{*} Максимально допустимое СУММАРНОЕ давление в корпусе гидравлической части = давление в трубопроводе на входе в насос + максимальное давление, создаваемое насосом.

3.2. Технические характеристики

Папачет		Модель	
Параметр	WIP-10	WIP-12	WIP-15
Электрическая сеть, В; Гц	~1	220 ± 10 %; !	50
Мощность, <i>Вт</i>	90	120	260
Макс. напор, <i>м</i>	10	12	15
Макс. производительность, м³/ч (л/мин)	1,2 (20)	1,6 (26)	1,6 (26)
Режим работы	S1 (n _l	родолжител	ьный)
Макс. частота вращения вала электролвигателя об/мин		2900	


Петенте	Модель		
Параметр	WIP-10	WIP-12	WIP-15
Рабочий (номинальный) ток, А	0,48	0,62	1,2
Ёмкость пускового конденсатора, <i>мкФ</i>	2,5	3,5	6
Электрокабель:			
– длина, <i>м</i>		1,2	
– число жил × сечение, <i>мм</i> ²	3 × 0,4	3 × 0,4	3 × 0,5
– штепсельная вилка		есть	
Класс нагревостойкости изоляции		В	
Встроенная термозащита электродвигателя,			
температура срабатывания теплового реле, ${}^{\circ}C$		130	
Уровень шума, <i>дБ</i>		≈ 55	
Степень защиты		IP44	
Вес нетто, кг	2,4	3,5	4,5

3.3. Габаритные и присоединительные размеры

Модель	Габаритные и установочные размеры, мм				Присоединительные размеры			
	а	b	С	d	е	f	g1	g2 (дюйм)
WIP-10	90	89	76	155	179	70	M26×1,5	1/2"
WIP-12	100	95	76	165	209	85	M26×1,5	1/2"
WIP-15	110	125	86	175	215	92	M26×1,5	1/2"

3.4. Напорно-расходные характеристики

Приведённые данные по максимальному напору и максимальной производительности справедливы при напряжении электросети 220 В.

4. Устройство и принцип работы

Общее устройство насосов серии WIP показано на рис. 2.

Насос состоит из двух основных частей — гидравлической и электромеханической.

Гидравлическая часть объединяет в себе корпус насоса 2 с крышкой, внутри которого находится рабочее колесо вихревого типа, всасывающий 3 и напорный 1 патрубки, а также датчик потока 12. Датчик потока оснащён кабелем питания 11 со штекером. Корпус насоса, рабочее колесо и проточная часть датчика потока изготовлены из латуни.

Электромеханическая часть включает в себя электродвигатель 9, пусковое устройство 6, вентилятор и защитный кожух 8.

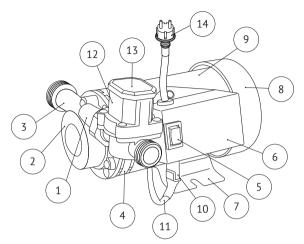


Рис. 2

Электродвигатель насоса — однофазный, со встроенной термозащитой и пусковым конденсатором. Корпус электродвигателя изготовлен из алюминиевого сплава.

На корпусе пускового устройства расположены: одноклавишный (рокерный) трёхпозиционный переключатель 5, с помощью которого осуществляется управление работой насоса, а также разъём 10 для подключения датчика потока. Пусковое устройство насоса оснащено электрическим кабелем 14 со штепсельной вилкой.

Между гидравлической и электромеханической частью расположено опорное кольцо 4.

В конструкции насоса предусмотрена монтажная опора 7, которая предназначена для дополнительной фиксации и крепления насоса на смежной поверхности.

Наклейки с изображением стрелок на корпусе электродвигателя и защитной крышке датчика потока 13 указывают направление вращения рабочего колеса и движения перекачиваемой среды.

На идентификационной табличке, расположенной на корпусе электродвигателя, указаны основные технические характеристики насоса и его серийный номер, первые четыре цифры которого обозначают год и месяц изготовления (ГГММ...).

Принцип работы насоса основан на повышении давления жидкости, движущейся от всасывающего патрубка к напорному. Электромагнитная энергия от обмоток статора электродвигателя передаётся на ротор, вал которого соединён с рабочим колесом. Жидкость подхватывается лопастями вращающегося рабочего колеса, в результате действия в рабочей камере вихревого и центробежного эффектов давление жидкости на выходе из напорного патрубка увеличивается.

5. Меры безопасности

- Насос должен использоваться только по своему прямому назначению в соответствии с техническими характеристиками и указаниями, приведёнными в соответствующих разделах данного Руководства.
- Монтаж, техническое обслуживание, поиск неисправностей, ремонт и демонтаж насоса (далее — «Работы») должны производиться только квалифицированным специалистом, в строгом соответствии с «Правилами устройства электроустановок» (ПУЭ) и «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТБ).
- В линии, идущей от распределительного щита к розетке, к которой подключается насос, должен быть установлен дифференциальный автоматический выключатель (УЗО) с током срабатывания не более 30 мА.
- Электрическое штекерное соединение датчика потока с пусковым устройством должно быть защищено от попадания влаги.
- Насос не предназначен для использования лицами (включая

детей) с пониженными физическими, сенсорными или умственными способностями или при отсутствии у них жизненного опыта или знаний, если они не находятся под присмотром или не про-инструктирован об использовании насоса лицом, ответственным за их безопасность.

 Насос должен быть установлен в недоступном для детей месте или дети должны находиться под присмотром для недопущения игр с прибором. Не следует позволять детям контактировать с насосом, даже если он выключен и отключен от электрической сети.

КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ:

- перекачивать с помощью насоса вязкие, горючие, легковоспламеняющиеся, взрывоопасные, химически агрессивные жидкости и вещества;
- подключать насос к электросети, не имеющей работоспособной и эффективной системы заземления;
- эксплуатировать насос в местах с повышенной влажностью воздуха, содержанием пыли, химически агрессивных и/или воспламеняющихся газов;
- устанавливать насос в помещениях, подверженных затоплению или воздействию отрицательных температур;
- запрещается установка и крепление насоса на опорных поверхностях и конструкциях, выполненных из древесины и строительных материалов на её основе, а также на поверхностях и конструкциях, покрытых горючими материалами;
- эксплуатировать насос, имеющий трещины в корпусе, повреждения изоляции электрокабеля или штепсельной вилки;
- эксплуатировать насос с демонтированной защитной крышкой пускового устройства и кожухом вентилятора;
- эксплуатировать насос при повышенном напряжении в электрической сети;
- подключать насос к электрической сети при неисправном электродвигателе;

- эксплуатировать насос при появлении запаха или дыма, характерного для горящей изоляции;
- отрезать штепсельную вилку, укорачивать электрический кабель или удлинять его наращиванием;
- ремонтировать и обслуживать насос, подключенный к электрической сети;
- поднимать, переносить и перемещать насос, удерживая его за электрокабель;
- тянуть за электрокабель, вынимая вилку из розетки (беритесь рукой за вилку, придерживая розетку другой рукой);
- вставлять и вынимать вилку из розетки мокрыми руками.
- Перед проведением работ необходимо убедиться, что электропитание отключено и приняты все меры, чтобы исключить его случайное включение. Подача напряжения на насос разрешается только после окончания работ.
- Перед проведением работ сбросьте давление в системе, открыв кран в точке водоразбора.
- По окончании работ все демонтированные защитные и предохранительные устройства в электросети (линии розетки) должны быть установлены обратно и/или снова включены.
- Отключайте насос от электросети, если он не используется на протяжении длительного времени.
- Переоборудование или модификацию насоса разрешается выполнять только по согласованию с Изготовителем.
- Разборка и ремонт насоса должны осуществляться только специалистами Сервисной службы.

6. Монтаж насоса

6.1. Общие правила монтажа

Перед проведением монтажных работ и вводом насоса в эксплуатацию внимательно ознакомьтесь с требованиями Раздела 5 «Меры безопасности».

Проверьте соответствие эксплуатационных, напорно-расходных и электрических характеристик насоса условиям на месте эксплуатации, а также параметрам Вашей системы и электрической сети (см. Раздел 3 «Технические характеристики и условия эксплуатации»).

ВНИМАНИЕ!

Установку насоса следует производить только после окончания всех сварочных, паяльных, слесарных и других работ в системе, а также тщательной промывки трубопроводов.

Произведите визуальный осмотр насоса и убедитесь, что отсутствуют механические повреждения корпуса и электрокабеля.

Насос следует устанавливать в отапливаемом помещении для предупреждения замерзания перекачиваемой среды.

Насос должен быть установлен таким образом, чтобы был обеспечен свободный и удобный доступ для визуального контроля его технического состояния, проведения технического обслуживания (см. Раздел 7 «Техническое обслуживание»), ремонта (см. Раздел 10 «Возможные неисправности и способы их устранения») и демонтажа, а также удобный и безопасный доступ к электрической розетке (см. подраздел 6.2. «Электрическое подключение»).

Не следует располагать насос в самой нижней точке системы, чтобы предотвратить накопление отложений и загрязнений в рабочей камере насоса, которые могут привести к блокировке рабочего колеса. Также не следует устанавливать насос в верхней точке системы, из-за возможного накапливания воздуха в рабочей камере.

Место установки насоса рекомендуется выбирать с таким расчётом, чтобы в случае возникновения протечек в системе, например, в расположенной выше трубе или трубопроводной арматуре, вода не попала на кабель электропитания, пусковое устройство, корпус электродвигателя и внутрь кожуха вентилятора.

Насос следует устанавливать как можно дальше от изгибов и разветвлений подающего трубопровода (рис. 3 и 4), чтобы избежать возмущений потока при всасывании (вихрей, неравномерного распределения давления, резкого изменения скорости), которые приводят к снижению напорно-расходных характеристик насоса и повышенному шуму во время его работы.

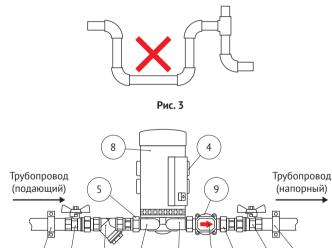
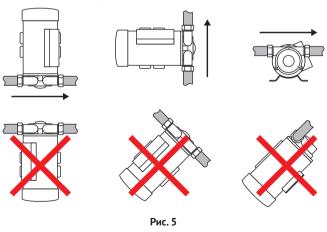


Рис. 4


Типовая схема монтажа насоса на трубопроводе системы показана на рис. 4. Соединение насоса 8 с трубопроводом производится с помощью входящих в комплект соединительных элементов 5 (см. также Раздел 2 «Комплект поставки»). При монтаже соблюдайте направление движения перекачиваемой среды (вращения рабочего колеса), указанное стрелками на корпусе электродвигателя и защитной крышке датчика потока 10 (см. также рис. 2, поз. 13).

ВНИМАНИЕ!

Не допускаются ударные воздействия на изделие при монтаже.

Насос должен быть установлен таким образом, чтобы пусковое устройство находилось сверху или сбоку от трубопровода, во избежание проникновения внутрь влаги, из-за протечки или стекания конденсата. Допустимые и недопустимые положения установки насоса показаны на рис. 5.

 \triangle

ВНИМАНИЕ!

Насос должен быть надёжно закреплён на месте эксплуатации.

Датчик потока 9 устанавливается на напорном патрубке насоса 7. Перед всасывающим патрубком 6 необходимо установить фильтр грубой очистки 3, чтобы обеспечить длительную и надёжную эксплуатацию насоса и всей системы. До и после насоса рекомендуется установить шаровые краны 2 для удобства его обслуживания, ремонта и демонтажа при необходимости замены.

ВНИМАНИЕ!

При монтаже насоса не прилагайте чрезмерных усилий во избежание срыва резьбы на патрубках и соединительных элементах.

Параллельно участку основного трубопровода, где установлен насос, рекомендуется смонтировать обходной трубопровод (байпас), который позволит эксплуатировать систему при поломке и демонтаже насоса.

После соединения с трубопроводом насос крепится к подходящей смежной поверхности или специально подготовленной опорной конструкции с помощью монтажной опоры 4.

Дополнительно, для предотвращения передачи вибрации от насоса к трубопроводу рекомендуется зафиксировать трубопровод на смежных поверхностях с помощью подходящих креплений 1 (клипсы, кронштейны, трубные хомуты со шпилькой и т. п.).

После монтажа насос не должен испытывать нагрузок от трубопровода (вес, изгиб, растяжение, кручение), например, из-за несоосности внутренних каналов или перекосов соединений, которые могут возникнуть в случае некачественного выполнения работ по монтажу трубопроводной системы.

При необходимости ограничить потери тепла от трубопровода и насоса, допускается теплоизолировать только гидравлическую часть (см. Раздел 4 «Устройство и принцип работы»). Электродвигатель, пусковое устройство и кожух вентилятора должны оставаться открытыми.

6.2. Электрическое подключение

ВНИМАНИЕ!

Подключение к электросети следует выполнять только после окончательного выполнения всех гидравлических соединений.

Подключение насоса к электрической сети должно быть выполнено квалифицированным специалистом в соответствии с требованиями Раздела 5 «Меры безопасности», с учётом электрических параметров насоса (см. Раздел 3 «Технические характеристики и условия эксплуатации» или идентификационную табличку на корпусе насоса), а также указаниями подраздела 6.1. «Общие правила монтажа»

Насос должен включаться непосредственно в электрическую розетку. Розетка должна быть:

- стационарная;
- иметь контакт заземления;
- использоваться только для питания насоса;
- защищена от проникновения влаги и попадания брызг воды при протечках в трубопроводе.

Для подключения датчика потока необходимо вставить штекер в разъём на корпусе пускового устройства (рис. 2, поз. 6, 10, 11, 12).

ВНИМАНИЕ!

Не допускайте натягивания и перекручивания электрического кабеля, а также его соприкосновения с корпусом насоса и конструктивными элементами трубопровода, изготовленными из металла.

Перед включением вилки в розетку (рис. 2, поз. 14) проверьте напряжение в питающей электрической сети и контролируйте его в процессе дальнейшей эксплуатации насоса. Работа с пониженным напряжением ведёт к снижению напорно-расходных характеристик насоса и повышению рабочего (номинального) тока.

В такой ситуации, для обеспечения рабочего напряжения питания 220 В рекомендуется использовать стабилизатор напряжения.

6.3. Управление и режимы работы

Насос может работать в двух режимах: ручном и автоматическом. Выбор режима работы осуществляется с помощью трёхпозиционного переключателя, расположенного на крышке пускового устройства (рис. 2, поз. 5).

Автоматический режим управления (переключатель в положении «II»). Управление работой насоса происходит с помощью датчика потока. Насос включается автоматически, если скорость потока жидкости, проходящей через датчик, более 2 л/мин и выключается при прекращении потока. Такой принцип управления также позволяет защитить насос от работы в режиме «сухой ход». Например, при использовании насоса в системах ХВС и ГВС, если в процессе водоразбора по каким-то причинам прекратится подача воды на вход насоса, то он автоматически выключится.

Принцип работы датчика основан на взаимодействии магнита, встроенного в шторку, и герконового выключателя, расположенного в герметичном корпусе (рис. 2, поз. 12 и рис. 7б). Магнит, приближаясь к герконовому выключателю приводит к замыканию цепи и включению насоса. Отдаляясь, магнит перестает действовать, цепь размыкается и насос выключается.

Датчик оснащён винтом регулировки чувствительности, с помощью которого можно настроить срабатывание датчика (включение насоса) при большем или меньшем напоре жидкости в трубопроводе.

ВНИМАНИЕ!

Оптимальная настройка чувствительности датчика потока уже произведена на заводе-изготовителе, изменять её не рекомендуется. Ручной режим управления (переключатель в положении «I»). Насос включен и работает постоянно. Работу насоса в данном режиме необходимо контролировать, в связи с риском возникновения аварийного режима работы («сухой ход», работа на закрытый кран и т.п.).

ВНИМАНИЕ!

В ручном режиме управления насос не выключается автоматически. Не оставляйте работающий насос без присмотра на длительное время.

Насос выключен (переключатель в положении «О»). Насос не работает. При этом, перекачиваемая среда может свободно протекать через насос.

Данный режим используется, когда в системе, на её отдельном участке (участке трубопровода) или в точке водоразбора достаточное давление и применение насоса временно не требуется.

ВНИМАНИЕ!

При эксплуатации системы с выключенным насосом велика вероятность накопления механических примесей и образования отложений в рабочей камере, что может привести к блокировке рабочего колеса при попытке запуска насоса. В такой ситуации, настоятельно рекомендуется эксплуатировать систему через байпас (см. подраздел 6.1. «Общие правила монтажа»).

6.4. Ввод в эксплуатацию

ВНИМАНИЕ!

Не допускается работа насоса без расхода перекачиваемой среды (на «закрытый кран»).

Перед началом эксплуатации необходимо заполнить трубопровод и насос (систему) перекачиваемой жидкостью, а также удалить из них остатки воздуха.

Для этого выполните следующие действия:

- Откройте запорную арматуру на входе и выходе насоса (рис. 4, поз. 2);
- Вставьте вилку в розетку и включите насос в автоматическом режиме (см. подразделы 6.2. «Электрическое подключение» и 6.3. «Управление и режимы работы»).
- Откройте точку водоразбора (кран). Дождитесь, когда вода будет поступать из крана равномерно (без воздуха), после этого закройте его.
- 4. Откройте кран снова. Убедитесь, что вода поступает без рывков, напор достаточный и стабильный. При необходимости повторите действия, указанные в п. 3 ещё раз.

ВНИМАНИЕ!

Не используйте насос для удаления воздуха из всей системы. Не допускается работа насоса без перекачиваемой жидкости (в режиме «сухой ход»).

Для полного удаления воздуха из системы и предотвращения его накапливания в ходе дальнейшей эксплуатации, необходимо выполнить специальные технические мероприятия соответствующие назначению системы: надлежащим образом обустроить новую или модернизировать старую систему, установить предохранительную арматуру (например, автоматический воздухоотводчик), контролировать её работоспособность, а также герметичность системы и т. д.

ВНИМАНИЕ!

В зависимости от условий эксплуатации (высокая температура перекачиваемой среды, продолжительная работа) корпусы насоса и электродвигателя могут быть сильно нагреты. Будьте осторожны, можно получить **термический ожог!**

Насосы вихревого типа, к которому относятся насосы серии WIP (см. Раздел 4 «Устройство и принцип работы»), характеризуются

малыми зазорами между корпусом насоса и рабочим колесом и являются чувствительными к показателям перекачиваемой среды (соли жёсткости, механические примеси и т.д.). Поэтому, перед пуском насоса после длительного перерыва в работе рекомен-

дуется снять защитный кожух и вентилятор (см. рис. 6, поз. 1 и 2), и с помощью подходящего подручного инструмента провернуть вал. После этого установите вентилятор и кожух на место, запустите насос в работу.

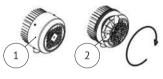


Рис. 6

ВНИМАНИЕ!

В случае блокировки вала и невозможности его ручной разблокировки запрещается включать насос, так как это может привести к выходу его из строя. Демонтируйте насос и обратитесь в Сервисный центр.

7. Техническое обслуживание

При проведении технического обслуживания должны соблюдаться требования Раздела 5 «Меры безопасности».

Обслуживание насоса заключается в регулярном внешнем осмотре корпуса, основных узлов, комплектующих изделий, соединений с трубопроводом, проверке и очистке датчика потока, с целью раннего выявления и предупреждения неисправностей.

Не реже одного раза в 3 месяца необходимо проверять целостность изоляции электрического кабеля, надёжность и герметичность соединений патрубков насоса с трубопроводом.

Не реже одного раза в 6 месяцев следует проверять надёжность крепления насоса к опорной поверхности.

Периодически, в зависимости от показателей перекачиваемой среды (наличие механических примесей, взвесей, повышенная жёсткость воды и т.д.) следует выполнять очистку датчика потока.

Для этого открутите четыре винта (рис. 7, а) и извлеките головку с коммутационным модулем из проточной части (корпуса) датчика. Очистите от загрязнений и отложений доступные детали и участки поверхности головки, а также полость в проточной части (рис. 7, 6). После этого, в обратном порядке соберите датчик.

ВНИМАНИЕ!

Будьте аккуратны, не повредите круглую уплотнительную прокладку при разборке датчика.

Также необходимо регулярно выполнять проверку и очистку фильтра грубой очистки (рис. 4, поз. 3). Интервал проверок устанавливается в зависимости от интенсивности накопления загрязнений.

В процессе эксплуатации насоса, накапливающиеся в рабочей камере загрязнения и образующиеся отложения способны привести к затруднённому вращению и блокировке рабочего колеса (см. подразделы 6.1. «Общие правила монтажа» и 6.4. «Ввод в эксплуатацию»). Поэтому, в зависимости от условий эксплуатации, может потребоваться периодический демонтаж насоса для промывки гидравлической части чистой водой.

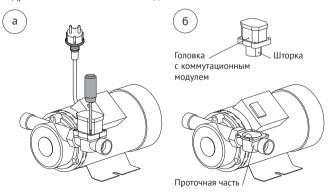


Рис. 7

8. Транспортирование и хранение

Если насос был в эксплуатации, то перед длительным хранением следует очистить его наружную поверхность от пыли и загрязнений, промыть гидравлическую часть чистой водой (см. Раздел 7 «Техническое обслуживание»), слить остатки воды и просушить.

Насос следует хранить в сухом, закрытом помещении, при температуре окружающей среды от +1 до +40 °С, вдали от отопительных приборов, избегая попадания на него прямых солнечных лучей. Воздух помещения не должен содержать агрессивных паров и газов.

Транспортировка насоса, упакованного в тару, осуществляется крытым транспортом любого вида, обеспечивающим его сохранность, в соответствии с правилами перевозок грузов, действующими на данном виде транспорта. При транспортировке должна быть исключена возможность перемещения насоса внутри транспортного средства.

9. Утилизация

Изделие не должно быть утилизировано вместе с бытовыми отходами. Возможные способы утилизации необходимо узнать у местных коммунальных служб. Упаковка насоса выполнена из картона и может быть переработана.

10. Возможные неисправности и способы их устранения

Неисправность	Возможные причины	Способы устранения
Насос не работает при включенном электропитании или самопроиз- вольно выклю- чился в процессе	Отсутствует напряжение в электрической сети	Проверьте напряжение в сети Проверьте питающую линию розетки: целостность электрического кабеля, качество контактов и исправность защитных устройств
работы	Низкое напряжение в электрической сети	Подключите насос к электросети через стабилизатор напряжения (см. подразделы 3.1. «Технические характеристики» и 6.2. «Электрическое подключение»)
	Скорость движения перекачиваемой среды в системе недостаточная для срабатывания датчика потока и включения насоса (для автоматического режима управления)	Обеспечьте скорость движения перекачиваемой жидкости в подающем трубопроводе (на входе в насос) более 2 л/мин: – увеличьте расход воды в точке водоразбора, увеличив степене открытия крана или открыв его полностью (для автономной и централизованной системы ГВС/ХВС);
		 проверьте уровень воды в источнике водоснабжения, эффективность работы насоса для водозабора, наличие загрязнений в трубопроводе и т.д. (для автономной системь ГВС/ХВС);
		 переключите насос в ручной режим управления, см. подраз- дел 6.3. «Управление и режимь работы» (для автономной и централизованной системы ГВС/ХВС)

электропитании или самопроиз- вольно выклю- чился в процессе работы	тического режима управления)			
	Неисправность пуско- вого конденсатора	Замените конденсатор		
		Обратитесь в Сервисный центр		
	Сработала термоза- щита электродвигателя	Устраните причину срабатывания термозащиты		
		Проверьте соответствие условий эксплуатации насоса (тем-пературу перекачиваемой и окружающей среды, напряжение в электрической сети и пр.) его техническим характеристикам (см. подраздел 3.1. «Технические характеристик»)		
		Работоспособность насоса восстановится после остывания электродвигателя ≈ 3060 минут		
	Заблокировано рабочее колесо насоса или вал электродвигателя	Проверните вал электродвигателя, используя доступ к нему со стороны вентилятора. Вращайте вал до тех пор, пока не будет обеспечен его свободный ход		
		Проверьте подшипники, провернув вал электродвигателя Очистите рабочее колесо от загрязнений и отложений		
		Обратитесь в Сервисный центр		
	Неисправность элект- родвигателя	Обратитесь в Сервисный центр Обратитесь в Сервисный центр		

Способы устранения
Обратитесь в Сервисный центр

Возможные причины

потока (для автома-

Неисправность датчика

Неисправность

Насос не работает

при включенном

Неисправность

пеиспривность	возможные причины	спосооы устіринения
Насос работает,	Засорение трубопро-	Устраните засоры:
перекачиваемая среда не подаётся или напор недо- статочный	вода и/или насоса	 в конструктивных элементах подающего и/или напорного трубопроводов (трубах, фитин- гах, запорной арматуре и т. д.);
		 в гидравлической части насоса (см. Разделы 4 «Устройство и принцип работы» и 7 «Техническое обслуживание»)
	Засорение или неисправность датчика потока (для автома- тического режима управления)	Разберите датчик потока (см. Раздел 7 «Техническое обслужи- вание»):
		 очистите при обнаружении загрязнений;
		– убедитесь, что шторка двига- ется свободно, без заеданий
		Обратитесь в Сервисный центр
	В системе ГВС/ХВС нет воды (для ручного режима управления)	Проверьте источник водоснабжения и обеспечьте подачу воды в систему
	Воздух в насосе и системе	Проверьте герметичность подающего трубопровода, устраните причину разгерметизации
		Удалите воздух из насоса и системы
Повышенный шум и/или вибрация	Воздух в насосе и системе	Удалите воздух из насоса и системы
при работе насоса	Запорная арматура на выходе насоса:	Откройте полностью запорную арматуру, установленную на
	– закрыта (для ручного режима управления);	выходе насоса (см. подраздел 6.1. «Общие правила монтажа»)
	– открыта не полно- стью (для автома- тического режима управления)	

Возможные причины

Способы устранения

	1
	Η.
	1
)
	`
	1
5	
+	
	T.
	1
5	Į
	1
	į
000	1
1000	1
	į
	1
	1
ппоп в	
DOD DE	
חחח פבי	
ממטם מכא	THOU KN
חחחח פבאר	
חחח פבאסי	CKGZ CDAR
חחח סבאום	THOU KN
חחחח פבאושו	THOSE ROLLS
חחחח מבאושם	CKGZ CDAR
LIPCKAG DONN	THOSE ROLLS
NUPCK20 DONN	TOTAL TOTAL
THUPEKSO TOTAL	ווכרומא ווסלא
THAN PENDENNIH	ווכרומא ווסלא
ппоп всузалин.	ווכרומא ווסלא
THUPEKSO DONN	THE TOTAL HOPE
THUNDERSO HON Y	THE PROPERTY
PYHINDECKSO DON YOU	THE TOTAL HOPE

Неисправность	Возможные причины	Способы устранения	
Повышенный шум и/или вибрация при работе насоса	Ослабло крепление насоса к опорной поверхности	Проверьте качество резьбовых соединений, подтяните их при необходимости	
	Частично повреждены подшипники	Обратитесь в Сервисный центр	
Насос включается, работает и через короткое время самопроизвольно выключается	Низкое или слишком высокое напряжение в электрической сети	Подключите насос к электросети через стабилизатор напряжения (см. подразделы 3.1. «Технические характеристики» и 6.2. «Электрическое подключение»)	
(слишком часто срабатывает встроенная в электродвигатель термозащита)	Затруднено вращение рабочего колеса и/или вала электродвигателя: – загрязнения и отложения в гидравлической части насоса; – частично разрушены подшипники в электродвигателе	Проверните вал электродвигателя, используя доступ к нему со стороны вентилятора. Проверьте, свободно ли он вращается. При затрудненном вращении (наличии загрязнений и отложений) выполните очистку рабочей камеры (см. Раздел 7 «Техническое обслуживание») Обратитесь в Сервисный центр	
	Слишком высокая температура перекачи- ваемой среды	Проверьте соответствие условий эксплуатации насоса его техническим характеристикам (см. подраздел 3.1. «Технические характеристики» или данные на идентификационной табличке на корпусе насоса) Снизьте температуру перекачиваемой среды	
Пробой пита- ющей сети на корпус (при прикосновении к насосу «бьёт током»)	Повреждена система заземления	Обеспечьте заземление насоса в соответствии со стандартами и правилами (см. Раздел 5 «Меры безопасности» и подраздел 6.2. «Электрическое подключение»)	

11. Гарантийные обязательства

Изготовитель несёт гарантийные обязательства в течение 12 (двенадцати) месяцев от даты продажи Изделия через розничную торговую сеть.

Срок службы Изделия составляет 5 (пять) лет с момента начала эксплуатации.

В течение гарантийного срока Изготовитель бесплатно устраняет дефекты, возникшие по вине Изготовителя, или производит обмен Изделия при условии соблюдения Потребителем правил эксплуатации.

Гарантия не предусматривает возмещения материального ущерба или травм, возникших в результате неправильного монтажа и эксплуатации.

Гарантия не действует без предъявления заполненного гарантийного талона!

ВНИМАНИЕ!

Гарантийные обязательства не распространяются:

- на неисправности, возникшие в результате несоблюдения Потребителем требований настоящего Руководства по монтажу и эксплуатации;
- на механические повреждения, вызванные внешним ударным воздействием, небрежным обращением, либо воздействием высоких и низких (отрицательных) температур окружающей среды;
- на насосы, подвергшиеся самостоятельной разборке, ремонту или модификации;
- на неисправности, возникшие в результате работы насоса без перекачиваемой среды и без её расхода, а также с повышенным током. К безусловным признакам перегрузки относятся: разрушение уплотнений и подшипников; потемнения, подгорания и обугливание изоляции электрокабеля, контактов, обмотки статора, тепловые деформации и следы оплавлений, цвета побежалости на деталях и узлах; сильное внутреннее загрязнение гидравлической части;
- на насосы с отрезанной штепсельной вилкой электрокабеля;
- на детали, подвергшиеся сильному износу, в следствии перекачивания жидкости с большим содержанием твёрдых, взвешенных частиц;
- на ремонт, потребность в котором возникает вследствие нормального, естественного износа, сокращающего срок службы насоса, его узлов, деталей и комплектующих изделий, а также в случае полной выработки их ресурса.